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Abstract 

Background: Experimental K+ depletion reversibly inhibits insulin secretion, while 

chronic metabolic acidosis decreases insulin sensitivity. We aimed to investigate the 

effects of potassium supplementation and alkali supplementation in non-acidotic, 

normokalemic humans with combined glucose intolerance. 

Study design and results: In this double-blind, placebo-controlled study in 11 subjects 

(7 male, 4 female, ages 47 to 63 y), 90 meqs of oral KCl  or Kcitrate per day for 2 

weeks each increased insulin production as measured by homeostasis model 

assessment Beta [KCl = 86 (CI 81-91), Kcitrate = 88 (82-94), Placebo = 78 (73-83) 

%, p < 0.04), but only Kcitrate attenuated insulin resistance as assessed by HOMA-

IR (insulin resistance, Kcitrate = 2.8 (2.5-3.1), placebo = 3.2 (2.9-3.5), p<0.03) and 

only Kcitrate increased quantitative insulin sensitivity check index (Quicki, Kcitrate = 

0.355 (0.305-0.405), placebo = 0.320 (0.265-0.375 p<0.04). These results were 

confirmed by independent measurements, i.e. HOMA c-peptide and wholy body 

insulin sensitivity index measured during oral glucose tolerance testing. Kcitrate 

significantly decreased systolic and diastolic 24 hour ambulatory blood pressures (-

4.0 (-3 to- 5) and -2.7 (-1.9 to -3.5), respectively as compared to placebo, p<0.02). 

while KCl was without a significant effect. 

Conclusions: K+ supplementation in the absence of overt K+ depletion improves beta-

cell function in subjects with combined glucose intolerance. The insulin-sensitizing 

and hypotensive effect, however, depend on citrate as the accompanying anion.  
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Introduction 

In both humans and experimental animals, experimental potassium depletion was 

shown to reversibly inhibit insulin secretion, irrespective of the etiology (1-3), while 

chronic metabolic acidosis was shown to decrease systemic insulin sensitivity (4, 5). 

For both potassium depletion and metabolic acidosis, the mechanisms of these 

alterations in glucose or insulin metabolism are poorly characterized. In the case of 

acidosis, acidosis-induced hyperglucocorticoidism (6, 7) and acidosis-associated 

decreases in cytokines known to enhance insulin sensitivity such as 

(undercarboxylated) osteocalcin, adiponectin or leptin (8-11), might play a role. It is 

also largely unexplored whether potassium and/or alkali supplementation have any 

effect on glucose/insulin metabolism in the absence of overt potassium depletion or 

metabolic acidosis.  

In non-diabetic, non-acidotic elderly, chronic HCO3
- treatment with complete 

neutralization of endogenous H+ production failed to alter insulin sensitivity (12). 

However, in a nested case control study (n = 1360), the prospective risk for type 2 

diabetes (T2DM*) increased inversely with [HCO3
-]p (13) and  serum [K+] and dietary 

K+ intake inversely correlated with the risk of incident T2DM (with and without 

thiazide treatment, 14-16). Western diets are characterized by a low potassium 

content and high acid load (17) and the incidence of T2DM continues to increase 

dramatically in populations ingesting Western diets. Combined glucose intolerance 

(CGI, so-called prediabetes ) is a reversible, but high risk state for the development 

of overt T2DM (18). In addition, CGI has been identified recently as an independent 

risk factor for the development of stroke (19). We, therefore, wished to evaluate the 

effect of potassium with and without alkali supplementation on metabolic control in 

subjects with CGI.  
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*abbreviations: Diabetes mellitus type 2 = T2DM, HOMA = homeostasis assessment 

model, Quicki = quantitative insulin sensitivity check index, ISI = whole-body insulin 

sensitivity index, CI = confidence interval, CGI = combined glucose intolerance, […] = 

concentration 

 

 

Methods 

 

To assess the effects of potassium and alkali supplementation on beta-cell function 

and insulin sensitivity in CGI (i.e.  the combination of impaired fasting glucose and 

impaired glucose tolerance), we screened 43 overweight subjects taking no current 

medications at enrollment and within the preceding three months and who had a 

positive family history for T2DM in first or second degree relatives. Of these 43 

subjects, 11 fulfilled the strict criteria of CGI, i.e. fasting plasma [glucose] >5.6 to <7.0 

mmol/L AND plasma [glucose] 2 h after 75g of oral glucose > 7.7 to < 11.1 mmol/L 

(20). All subjects were ingesting an identical standardized meal the evening prior to 

the glucose tolerance test. 

The subjects continued their usual life-style and diet behavior during the study. They 

were assigned in a double-blinded, randomized cross-over design to KCl (90 meq per 

day, 9 tablets, 3 divided doses), trivalent Kcitrate (90 meq per day, 9 tablets, three 

divided doses) or placebo (9 tablets, three divided doses) of identical taste and 

appearance (purchased from Mission Pharmacal, San Antonio, TX) for 14 days each. 

At the end of each period, two consecutive 24 hour urine collections with a fasting 

blood draw at the end of the collection periods and 24 hour ambulatory blood 

pressure recordings (Spacelabs, Redmond WA) were performed. The results given 

are the means of values obtained on these two days. After the second collection 
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period, an oral glucose tolerance test (see below) was performed at 0800 am in all 

three study periods. There was a washout period of at least 14 days between the 

three periods. 

Data from screening visits (oGTT and blood pressure) were used as baseline data 

(see “calculation of beta-cell function and insulin sensitivity” below) 

 

Calculation of beta-cell function and insulin sensitivity 

Using morning fasting plasma [glucose] and fasting serum [insulin], homeostasis 

model assessment beta (for beta cell function) and insulin resistance (HOMA-beta 

and HOMA-IR) as well as HOMA beta-C-peptide were calculated using the HOMA 

2.2 calculator (21-23). 

Insulin sensitivity was also analysed by use of the quantitative insulin sensitivity 

check index (Quicki, 24) and by measuring an index of whole-body insulin sensitivity 

(ISI) during the oral glucose tolerance test. ISI was shown to have excellent 

correlation with euglycemic insulin clamping (25). Quicki equals 1/[log(Io) + log(Go)], 

where Io is the fasting insulin concentration and Go is the fasting glucose 

concentration. ISI is calculated as 10 000 / [(fasting glucose x fasting insulin) x (mean 

glucose x mean insulin during OGTT)]1/2.   

All acid-base, electrolyte and creatinine determinations were performed using the 

established routine procedures of the division of laboratory medicine. Renal net acid 

excretion (NAE) was calculated in 24 hour urines as the sum of ammonium (NH4
+) 

plus calculated titratable acidity minus HCO3
- excretion values. 

 

 

Analytical methods 
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Serum insulin and C-peptide were measured by electrochemiluminescence (ECL) 

method on an Elecsys 2010 system (Roche, Switzerland). Plasma leptin 

concentrations were determined using a sandwich immunoassay based fluorometric 

xMAP technology on Luminex 200 machines (luminex muti-analyte profiling system, 

Luminex, Corp., Austin, TX, USA). The immunoassay kit is commercially available 

from Millipore Corporation. Serum adiponectin concentrations were determined by 

ELISA “EZHADP-61K ( Millipore, USA). The total osteocalcin concentrations were 

measured by the enzyme amplified sensitivity immunoassay Kit from DRG 

Instruments GmbH. Serum total and undercarboxylated osteocalcin concentrations 

were measured by electrochemiluminescence immunoassay (Roche). Urinary 

tetrahydrocortisol was measured by HPLC. This metabolite was chosen as it is freely 

filtered at the glomerulus and has additional tubular reabsorption/secretion. 

 

 

Statistical methods 

Values given are means ± standard deviation. Statistical analysis was made by 

ANOVA for repeated measurements using SSPS for Windows NT software, version 

20.0 (SSPS Inc., Chicago, IL). Data for which baseline measurements were available 

(i.e. HOMA-Beta, HOMA-IR, HOMA Beta-C-peptide, Quicki, ISI and blood pressure) 

were tested using analysis of covariance (ANCOVA) with baseline values as 

covariates. These data are reported as adjusted means with confidence intervals. 

Since there was no significant interaction between baseline data and treatment group 

results a p value of <0.05 was considered significant. 

Ethical approval 

The study protocol was approved by the Ethics committee of both Cantons of Basel 

(Switzerland). 
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Results 

11 subjects (7 male, 4 female, ages 47 to 63 y, mean BMI = 30.5 + 2.1 kg/m2, mean 

HbA1C = 6.2 + 0.2 %) with combined glucose intolerance were enrolled in and 

completed the entire study protocol. Tables 1 a-c show the plasma and 24 hour 

urinary electrolyte and acid-base composition as well as fractional renal electrolyte 

excretion rates at the end of the KCl (90 meq per day), Kcitrate (90 meq per day) and 

placebo periods (2 weeks each). Neither K salt had a significant effect on plasma 

[K+]. Kcitrate resulted in reversal to negative renal net acid excretion (NAE), while KCl 

had no significant effect on NAE. As described previously, Kcitrate significantly 

decreased renal fractional excretion of calcium (7, 20). The remainder of the results 

are shown in table 2: Homeostasis model assessment Beta (HOMA-Beta), a 

measure of beta-cell function/insulin production significantly increased in response to 

both KCl and Kcitrate [Kcitrate = 88 (CI 82-94), Kchloride = 86 (81-91), placebo = 78 

(73-83)%*p < 0.04 or both comparisons,]. However, only Kcitrate improved insulin 

sensitivity significantly as estimated by a reduced HOMA-IR (insulin resistance) and 

increased quantitative insulin-sensitivity check index (Quicki, Table 2). As HOMA-

Beta, HOMA-IR and Quicki calculations rely on the use of the same parameters, we 

wished to test beta-cell function and insulin sensitivity with an additional set of 

independent parameters, i.e. HOMA-Beta c-peptide and whole body insulin sensitivity 

index as calculated from multiple insulin/glucose values during an oral glucose 

tolerance test. As shown in the Table 2, HOMA-Beta c-peptide increased significantly 

both in response to KCl as well as Kcitrate confirming the HOMA-Beta insulin results. 

Whole body insulin sensitivity index was significantly increased in Kcitrate period as 

compared to placebo [Kcitrate =5.5 (5.1-5.9) , placebo =4.6 (4.2-5.0), p<0.0]), but KCl 

administration had no significant effect (Table 2).  

Potassium 
supplementation 
increases 
pancreatic 
insulin output 
but only 
alkalinization 
improves insulin 
sensitivity
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In these normotensive prediabetics, mean 24 hour systolic and diastolic ambulatory 

arterial blood pressures significantly decreased in response to Kcitrate by -4.0 (-3 to- 

5) and by -2.7 (-1.9 to -3.5) mmHg , respectively, as compared to placebo. KCl did 

not affect blood pressure significantly (Table 2). Kcitrate induced a significant weight 

loss of 1.5 + 0.5 kg ( p= 0.018), while no significant changes in body weights were 

observed during KCl and placebo periods.  

Neither K salt induced significant changes in circulating serum concentrations of 

adiponectin (Kcitrate = 15.1 + 7.1, KCl = 16.0 + 7.4, placebo = 15.5 + 7.5 ng/ml, 

respectively) or in carboxylated osteocalcin (Kcitrate = 6.1 + 1.9, KCl = 6.3 + 1.8 , 

placebo = 6.6 + 1.9 ng/ml, respectively)  and in undercarboxylated osteocalcin 

(Kcitrate = 44 + 16, KCl = 43  + 15 , placebo = 41 + 17 %, respectively). Similarly, in 

the male subjects, serum leptin levels were 15.0 ± 7.9 ng/mL during placebo and not 

affected significantly by both Kcitrate and KCl administration (16.1 + 8.1 and 16.7 + 

8.4 ng/ml, respectively). In the female subjects leptin levels were also similar during 

all periods: 19.4 + 7.1, 20.1 + 8.3, 17.8 + 7.5, for placebo, KCl and Kcitrate periods, 

respectively. 

Urinary excretion of tetrahydrocortisol (THF) decreased slightly, but significantly from 

2 810 + 310 to 2 678 + 290 mcgr/24 h (p = 0.044) during the Kcitrate period 

confirming our results in non-diabetic subjects (7), while KCl had no significant effect. 

  

Discussion 

The results of this placebo-controlled, randomized cross-over pilot study demonstrate 

that even in the absence of overt, pre-existing K+ depletion, K+ supplementation 

improved beta-cell function (measures of insulin secretion) in subjects with CGI 

(prediabetes). The insulin-sensitizing and hypotensive effect, however, critically 

depended on citrate as the accompanying anion. Whether these effects are 
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specifically dependent on citrate or by its oxidation to bicarbonate should be tested 

by comparing citrate`s effect with those of other equipotent alkali. The insulin-

sensitizing effect of Kcitrate/alkali administration was shown herein to be independent 

of the best characterized circulating, insulin sensitivity modulating factors, i.e. total 

and undercarboxylated osteocalcin, adiponectin and leptin. All of these cytokines, 

with the exception of undercarboxylated osteocalcin, have previously been shown to 

be affected by systemic acid loading and all are associated with altered insulin 

sensitivity (8-10). In contrast and as previously reported (7), Kcitrate/alkali 

administration significantly decreased adrenal glucocorticoid production which may 

have contributed to improved insulin sensitivity. Future studies should investigate the 

relative importance of the effect of Kcitrate/alkali administration on indirect 

mechanisms of insulin sensitivity (glucocorticoid activity, other cytokines) and 

possible direct effects on cellular and intracellular insulin signalling pathways. 

In contrast to studies in patients with essential hypertension employing office blood 

pressure  measurements (21), the 24h ambulatory blood pressure lowering effect of 

K+ critically depended on citrate as the accompanying anion in these normotensive 

subjects with CGI (prediabetes). The blood-pressure lowering effect of Kictrate/alkali 

administration in this patient population needs further clarification. Both metabolic 

factors, i.e. improved insulin sensitivity or renal factors (decrease in body weight 

during the Kcitrate period) may be important.  

We have no clear mechanistic explanation for the unexpected  weight change in the 

Kcitrate period of minus 1.5 kg as compared to placebo and Kchloride. However, 

dietary potassium has been shown to be natriuretic via rapid inhibition (i.e. by 

phosphorylation) of the thiazide-sensitive sodium/chloride cotransporter in the distal 

convoluted tubule (28). The excess supplementation of chloride in the Kchloride 
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period may have counteracted this by causing greater volume expansion than 

Kcitrate.   

The placebo-controlled, randomized crossover design are among the prinicipal 

strengths of this study, while the small sample size currently precludes generalization 

of these results to all patients with CGI (prediabetes). Also, the relatively high dose of 

both KCl and Kcitrate may not be an optimal one..While the hyperinsulinemic 

euglycemic clamp technique is still the gold standard, our indices of insulin resistance 

have been shown to have good, linear correlation to the clamp (24, 25). In addition, 

we used several indices employing different, independent parameters and eliminated 

the problem of interindividual variation by our study design (each individual being its 

own control). 

The present results suggest that K+ supplementation with and without citrate/alkali 

may have a role in T2DM prevention and treatment. It will be important, therefore, to 

evaluate the dose-response relation of K and citrate/alkali supplementation and to 

investigate in larger populations whether progression of CGI to T2DM can be 

retarded or prevented and/or whether control of established T2DM can be improved 

by K with citrate/alkali administration. In addition, it will be of interest to evaluate the 

effect of long term differences in potassium and alkali intake on the epidemiology of 

T2DM (i.e. by analysis of large population cohorts). 
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Table 1a: Plasma electrolyte and arterialized blood acid-base parameters in patients with CGI during 

placebo, KCl and Kcitrate adiministration 

 

 

 

 

 

  

*denotes p < 0.05 for the comparison to both placebo and KCl 

 

 

 

 

 

 

 

 

Parameter [Na]p 

mmol/l 

[K]p 

mmol/l 

[CL]p 

mmol/l 

[PO4]p 

mmol/l 

ion[Ca]p 

mmol/l 

[Mg]p 

mmol/l 

[creatinine]p 

umol/l 

Blood 

pH 

(U) 

Arterialized 

PCO2 

mmHg 

[HCO3-

] 

mmol/l 

Placebo 139 + 

3 

3.9 +  

0.2 

105 +  

2 

1.0 +  

0.1 

1,13 +  

0.04 

0.87 + 

0.06 

69 +  5 7.399 

+  

0.005 

40.3 +  0.4 24.4 +  

0.3 

KCl (90 

mmols/day) 

138  +   

2 

3.9 +  

0.3 

104 +  

3 

0.9 + 

0.1 

1.15 + 

0.04 

0.85 + 

0.06 

65 + 7 7.394 

+ 

0.007 

39.6 +  0.5 23.7 + 

0.5 

Kcitrate (90 

mmols/day) 

139 + 

3 

3.7 + 

0.3 

104 +  

3 

0.9 + 

0.1 

1.17 + 

0.05 

0.86 + 

0.08 

64 +  6 7.404  

+0.006 

41.9 + 0.7* 25.0 + 

0.4* 
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Table 1b: Mean 24 hour urine electrolyte and net acid excretion during administration of placebo, KCl and Kcitrate (14 days) 

 

 

  

 

*denotes p< 0.05 and 
&
 denotes p <0.005 for the comparisons to placebo and KCl. 

«
 denotes p < 0.01 for the comparison of KCl and of Kcitrate to  

placebo 

Parameter Body 

weight  

kgs 

Na 

mmol/24 

h 

K 

mmol/24 

h 

Cl 

mmol/24 

h 

PO4 

mmol/24 

h 

Ionized 

Ca 

mmol/24 

h 

Mg 

mmol/24h 

creatinine 

mmol/24 

h 

pH 

(U) 

Urinary net acid 

excretion 

mmol/24 h 

Placebo 92.1 + 6.3 181 + 22 72  +  14 178 +  28 30.8 +  

3.7 

5.2 + 1.1 3.10 + 

0.37 

13.7  + 

1.1 

5.640 + 

0.145 

53.4 + 10.2 

KCl (90 mmols/day) 92.5 + 6.7 198 +  25 123 +  

17“ 

251  +  

34 

31.6 +  

4.1 

4.9  + 0.9 2.85 + 

0.32 

13.5 + 1.0 5.861 + 

0.127 

48.6 + 11.2 

Kcitrate (90 

mmols/day) 

90.6 + 

6.4* 

194 +  21 126  + 

18“ 

225 +  32 32.5 +  

4.4 

4.4 + 0.9* 3.00 + 

0.39 

14.5 + 1.2 6.101 + 

0.111“ 

-8.5  + 10.2
&
 

Baseline (screening) 92. 5 + 6.5          
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Table 1c: Mean fractional electrolyte excretion rates (FE, %) during placebo, KCl and K citrate 

administration in  

patients with combined glucose intolerance 

 

 

  

 

 

 

 

 

 

 

“denotes p < 0.015 for the comparison with placebo- * denotes p < 0.04 for the comparison to placebo 

Parameter FE Na FE K FE Cl FE Ca FE PO4 FE Mg 

Placebo 0.56 + 0.11 7.9 + 1.6 0.78 +  0.16 1.99 + 0.47 13.8 + 4.1 2.49  + 0.60 

KCl (90 

mmols/day) 

0.57 + 0.09 12.4“ + 1.9 0.89 +  

0.18“ 

1.72 +  0.51 13.4 + 3.8 2.25  + 0.51 

Kcitrate (90 

mmols/day) 

0.57 + 0.08 13.7“  + 2.0 0.88 +  

0.11“ 

1.48* + 0.32 14.5 + 4.9 2.28 + 0.49 
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Table 2: Parameters of insulin sensitivity, beta-cell function and 24 h mean systolic and diastolic blood 

pressures 

 

Parameter Baseline Placebo Kcitrate Kchloride 

HOMA-Beta (%) 77 + 8.0 78 (73-83) 88 (82-94)*  86 (81-91)* 

HOMA-IR 3.3 + 0.4 3.2 (2.9-3.5) 2.8 (2.5-3.1)“ 3.4 (3.1 – 3.7) 

Quantitative Insulin 

sensitivity check 

index (Quicki) 

0.319 + 0.07 0.320 (0.265-

0.375) 

0.345 (0.295-

0.395)* 

0.320 (0.245-

0.395) 

HOMA-Beta C-

peptide (%) 

114 +12 116 (106-126) 129 (119-139)“ 133 (122-144)” 

Whole body insulin 

sensitivity index 

(ISI) 

4.4 + 0.3 4.6 (4.2-5.0) 5.5 (5.1-5.9)
+
 4.2 (3.7-4.7) 

24 hour ambulatory 

mean systolic blood 

pressure (mm Hg) 

131 + 7 132 (126-139) 128 (122-136)
&
 135 (127-143) 

24 hour ambulatory 

mean diastolic 

blood pressure (mm 

Hg) 

93 + 5 92 (86-98) 89 (84-94)
&
 92 (85- 99) 

 

Values are means + SD (baseline values) and) means adjusted for baseline values for placebo, 

Kcitrate and Kchloride. Values in brackets are confidence intervals, p values were estimated using 

ANCOVA. * equals p< 0.04, “ equals p < 0.03, 
&
 equals p<0.02 and  + equals p < 0.01 

 
for the 

comparison to placebo. 
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Correction of metabolic acidosis improves
insulin resistance in chronic kidney disease
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Abstract

Background: Correction of metabolic acidosis (MA) with nutritional therapy or bicarbonate administration is widely
used in chronic kidney disease (CKD) patients. However, it is unknown whether these interventions reduce insulin
resistance (IR) in diabetic patients with CKD. We sought to evaluate the effect of MA correction on endogenous
insulin action in diabetic type 2 (DM2) CKD patients.

Methods: A total of 145 CKD subjects (83 men e 62 women) with DM2 treated with oral antidiabetic drugs were
included in the study and followed up to 1 year. All patients were randomly assigned 1:1 to either open-label (A)
oral bicarbonate to achieve serum bicarbonate levels of 24–28 mmol/L (treatment group) or (B) no treatment
(control group). The Homeostatic model assessment (HOMA) index was used to evaluate IR at study inception and
conclusion. Parametric and non-parametric tests as well as linear regression were used.

Results: At baseline no differences in demographic and clinical characteristics between the two groups
was observed. Average dose of bicarbonate in the treatment group was 0.7 ± 0.2 mmol/kg. Treated
patients showed a better metabolic control as confirmed by lower insulin levels (13.4 ± 5.2 vs 19.9 ± 6.3;
for treated and control subjects respectively; p < 0.001), Homa-IR (5.9[5.0-7.0] vs 6.3[5.3–8.2]; p = 0.01) and
need for oral antidiabetic drugs. The serum bicarbonate and HOMA-IR relationship was non-linear and
the largest HOMA-IR reduction was noted for serum bicarbonate levels between 24 and 28 mmol/l.
Adjustment for confounders, suggests that serum bicarbonate rather than treatment drives the effect on
HOMA-IR.

Conclusions: Serum bicarbonate is related to IR and the largest HOMA-IR reduction is noted for serum bicarbonate
between 24 and 28 mmol/l. Treatment with bicarbonate influences IR. However, changes in serum bicarbonate
explains the effect of treatment on HOMA index. Future efforts are required to validate these results in diabetic and
non-diabetic CKD patients.

Trial registration: The trial was registered at www.clinicaltrial.gov (Use of Bicarbonate in Chronic Renal Insufficiency
(UBI) study - NCT01640119)
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Background
Incidence of chronic kidney disease (CKD) as well as the
prevalence of diabetic subjects among CKD patients are
steadily increasing [1, 2]. As renal function declines,
metabolic acidosis and insulin resistance (IR) commonly
arise. Among others, these metabolic complications are
associated with serious consequences on bones and nu-
tritional status [3, 4] and likely contribute to some of the
abysmal risk of death associated with CKD.
Insulin resistance (IR) is characterized by suboptimal

biological responses of the liver, skeletal muscle and adi-
pose tissue to normal amounts of insulin secreted [4].
Conditions such as metabolic acidosis, anemia, inflamma-
tion, hyperactivity of the Renin-Angiotensin-Aldosterone
System (RAAS), vitamin D deficiency, physical inactivity,
excess of fat mass as well as nitrogen catabolites accumu-
lation have all been implicated in IR in CKD subjects [5].
Notably, several clinical consequences have been linked to
IR. Indeed, IR may promote endothelial dysfunction and
portends increased cardiovascular mortality. Although evi-
dence is not conclusive, some data also suggest that IR is a
harbinger of CKD incidence and progression. Based on
these lines of evidence, it is conceivable that IR represents
a modifiable risk factor and a potential therapeutic target
to improve CKD outcome [4–6].
The association between metabolic acidosis, IR and

the cardiovascular risk has been documented in the sci-
entific literature since 1924 [7]. However, in spite of the
fact that correction of metabolic acidosis with nutritional
therapy and/or oral administration of sodium bicarbon-
ate in CKD is widely used [8–10], it is unknown whether
correction of metabolic acidosis reduces IR and/or im-
proves insulin effects on target cells in diabetic subjects.
We aim to evaluate whether metabolic acidosis cor-

rection by sodium bicarbonate administration may
improve peripheral endogen insulin utilization by tar-
get organs in diabetic subjects with CKD treated with
oral antidiabetic drugs.

Methods
For current analyses, we analyzed the first 145 subjects
(83 men and 62 women) with Diabetes Mellitus type 2
not treated with insulin participating in the Use of Bicar-
bonate in Chronic Renal Insufficiency (UBI) study (NCT
NCT01640119) with at least 1 year of follow-up. The
UBI study protocol has been published previously [11].
Briefly, the UBI study is an on-going multi-center, open-
label, randomized controlled study designed to test the
impact of metabolic acidosis correction on CKD progres-
sion to End Stage Renal Disease (ESRD). CKD-3b-4 pa-
tients of 18 to 80 year of age, able to provide written
informed consent and serum bicarbonate levels below 24
mEql/l are randomized (allocation ratio 1:1) to either oral
sodium bicarbonate (treatment group) or conventional

therapy for CKD (control group). Study investigators are
free to adjust medications to achieve the targets for gly-
cated hemoglobin, bone mineral metabolism, blood pres-
sure, anemia, iron status, dyslipidemia as suggested by
guidelines on CKD patients’ management available at the
time of the study design [11]. The randomization process
is centralized to ensure allocation concealment. Patients
with evidence of neoplastic diseases, autoimmune dis-
eases, chronic heart failure NYHA class III-IV, uncon-
trolled arterial hypertension, severe peripheral arterial
disease (defined as limb amputation), cerebrovascular dis-
ease, neobladder or ureterosigmoidostomy, severe meta-
bolic acidosis (defined as serum bicarbonate <18 mEq/l)
or use of calcium carbonate in the 3-month prior to study
inclusion are excluded from the trial. Oral sodium bicar-
bonate is administered at the dose of 0.5 mmol/kg of body
weight (1 g of sodium bicarbonate contains 11.9 mmol –
initial dose about 3–4 g) two times a day until the achieve-
ment of the desired serum bicarbonate target of 24–
28 mmol/l. If a serum value of 28 mmol/l is exceeded, the
administration of bicarbonate is tapered each 3 days until
the desired serum target level is achieved [11].

Demographic, clinical and laboratory characteristics
Demographic and clinical characteristics were assessed
as study inception. Self-reported variables included age,
sex. Medical chart reviews were conducted to determine
the presence of diabetes mellitus status or the use of oral
antidiabetic medications, history of atherosclerotic car-
diovascular disease (ASCVD) and the use of different
medications. History of ASCVD was a composite meas-
ure that included myocardial infarction, angina, and per-
ipheral and cerebrovascular disease. Blood pressure was
measured after a 15 to 20 min rest, using a manual aner-
oid sphygmomanometer.
Routine biochemical laboratory measurements were

obtained at baseline and completion 12 months of
follow-up and analyzed at the facilities usual laboratories
as part of the standard patients care. All blood samples
were in a fasting condition. Insulin resistance was evalu-
ated via the Homeostatic Model Assessment (HOMA)
test at baseline and at completion of 12 months of
follow-up.
Finally, 25-OH vitamin D was measured every

3 months; the correction of low levels was started at
values lower than 20 ng/ml and stopped at values higher
than 50 ng/ml.
Patients using steroids and other drugs interfering dir-

ectly with glucose levels were excluded from the study.

Insulin resistance measurement and HOMA test
Insulin resistance was assessed indirectly by the Homeo-
static model assessment (HOMA) index as suggested by
Wallace and coworkers [12]. Briefly, the HOMA index is
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a mathematical model that allows to calculate insulin
sensitivity (HOMA-IR) and evaluate ß pancreatic cell
function (HOMA-%B) from fasting plasma glucose and
insulin levels [12]. It is a simple test, appropriate to per-
form in large epidemiological studies that nicely corre-
lates with experimental data obtained with direct
measurement techniques such as the euglycemic clamp
[13–16].
To perform the HOMA test, blood samples are

drawn twice (30 min apart) in 3 consecutive days. Pa-
tients are kept at rest, in a fasting status for at least
8 h before the blood sampling. Tobacco use is forbid-
den for the 12 h before blood tests. The presented
values for HOMA test at baseline and study comple-
tion are the mean values of the three consecutive
blood samples. For HOMA-IR and HOMA-%B calcu-
lation, the following formulas are used [12]:

– HOMA-IR = (FPI * FPG)/22.5;
– HOMA-%B = (20 * FPI)/(FPG - 3.5)

where FPI stands for fasting plasma insulin concentra-
tion (mU/l) and FPG stands for fasting plasma glucose
(mmol/l) (FPG conversion factor from mg/dl to mmol/l:
10.018).
HOMA-IR estimates of insulin resistance. Normal

values are <0.25. Values greater or equal than 5.5 indi-
cate insulin resistance typical of early stages of Diabetes
Mellitus. HOMA-B% estimates ß pancreatic cells func-
tion. It’s value ranges from 0 % (no pancreatic cell func-
tion) to 100 % (all pancreatic cell functioning). FPI and
FPG measurements were performed centrally at P.O. “A
Landolfi” – Solofra (AV), Italy, via COBAS 6000 or
COBAS C 501 (Roche Diagnostics) and IMMULITE
2000 (Siemens Healthcare Global), respectively.

Study objective and endpoint
Current analyses aim at testing the impact of metabolic
acidosis correction in CKD 3b-4 diabetic patients with
serum bicarbonate <24 mEq/l on insulin resistance eval-
uated via the Homeostatic Model Assessment (HOMA)
test. The HOMA was performed at study inception and
after 12 months of treatment with either oral sodium bi-
carbonate (treatment group) or conventional therapy for
CKD (control group).

Statistical analysis
Data are reported as mean ± SD or counts (percentage)
when appropriate. Un-paired T-test and Chi-square test
were used to assess difference between study groups at
baseline and study completion (Tables 1 and 2). The
bagplot (Fig. 1) was used to describe the bivariate associ-
ation of serum bicarbonate and HOMA test in subjects
randomized to oral sodium bicarbonate (treated) or

conventional therapy (controls) at study inception and
completion. Because of the random allocation to treat-
ment groups, the selection criterion was independent of
study investigators’ beliefs (i.e., we analyzed data of the
first 145 diabetic type 2 patients randomized in the UBI
study who completed 1 year of follow-up) and the the
optimal balance between groups at study inception, the
Wilcoxon rank sum test was used to assess between-
and within-group (treated vs control subjects) differ-
ences in HOMA-IR and HOMA-%B at study inception
as well as completion of 12 months of follow-up
(Table 3). Linear regression was used to assess the inde-
pendent association of treatment and/or metabolic acid-
osis correction and HOMA test at study completion.
First, we tested for the unadjusted association of (i)
treatment allocation, (ii) serum bicarbonate values at
follow-up and (iii) changes of serum bicarbonate (serum
bicarbonate at follow-up – serum bicarbonate at study
inception) with HOMA-IR (Table 4). Subsequently, we
tested the independent contribution of metabolic acidosis
correction (i.e., serum bicarbonate at study completion or
changes in serum bicarbonate) vs oral bicarbonate supple-
mentation, forcing both variables in the same regression
model (Table 4). However, due to the non-linear relation-
ship between serum bicarbonate (Fig. 2a) or changes in
serum bicarbonate (Fig. 2b) and HOMA index at study
completion, we tested for an interaction effect of treat-
ment and values of serum bicarbonate at study comple-
tion or changes of serum bicarbonates (Table 4). Because
of the significant effect modification of serum serum bi-
carbonate levels on treatment effect on HOMA test and
because at visual inspection (Fig. 2a) the association be-
tween serum bicarbonate and HOMA test was different
for values greater than 28 mmol/l, we performed some
additional analyses by applying regression splines with a
knot set at serum bicarbonate level of 28 mEq/l and tested
for the independent association between serum bicarbon-
ate, treatment and HOMA test at study completion
(Table 5). All analyses were conducted as intention-to-
treat. Two-tailed probability values ≤ 0.05 were considered
statistically significant. Analyses were completed using R
version 3.1.3 (2015-03-09) (The R Foundation for Statis-
tical Computing).

Results
A total of 145 (57 % men) diabetic type 2, middle-age
(65.5 ± 11.4 years) patients on oral antidiabetic medica-
tion were included in current analyses. At study incep-
tion, no significant differences in anthropometric,
clinical and laboratory characteristics between subjects
allocated to oral sodium bicarbonate or conventional
therapy were observed (Table 1). In particular, treated
subjects and controls exhibited similar renal function
(mean creatinine clearance: 32 ± 14 ml/min and 35 ±
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Table 1 Demographic, clinical, laboratory characteristics and use of oral anti-diabetic medications of patients randomized to oral
sodium bicarbonate (Treated) or conventional therapy (controls) at study inception

Overall Treated Control p-value

(N = 145) (N = 71) (N = 74)

Males, N (%) 83 (57 %) 47 (66 %) 36 (48 %) NS

Age, years 65.5 ± 11.4 64.9 ± 11.8 66.0 ± 12.9 NS

Body Weight, kg 75.5 ± 14.1 76.5 ± 14.6 73.4 ± 11.2 NS

Cardiovascular disease, N(%) 36 (25) 17 (24) 19 (26) NS

Systolic blood pressure, mmHg 122 ± 20 124 ± 19 120 ± 22 NS

Disatolic blood pressure, mmHg 73 ± 9 73 ± 8 73 ± 10 NS

Serum Bicarbonate, mEql/l 21.4 ± 1.9 21.2 ± 1.9 21.6 ± 2.0 NS

Serum Gucose, mg/dl 150 ± 44 149 ± 41 151 ± 47 NS

HbA1C % 6.76 ± 1.2 6.74 ± 1.0 6.8 ± 1.4 NS

Serum creatinine,mg/dl 2.1 ± 0.8 2.3 ± 0.8 2.0 ± 0.7 NS

BUN, mg/dl 87 ± 32 93 ± 35 81 ± 28 NS

Creatinine clearance, ml/min 33 ± 14 32 ± 14 35 ± 15 NS

Uric Acid, mg/dl 5.4 ± 1.8 5.6 ± 1.9 5.1 ± 1.8 NS

Serum sodium, mEql/l 139 ± 3 139 ± 3 139 ± 2 NS

Serum potassium, mEq/l 4.82 ± 0.7 4.85 ± 0.6 4.79 ± 0.7 NS

Total serum calcium, mg/dl 9.13 ± 0.6 9.14 ± 0.62 9.12 ± 0.58 NS

Serum phosphate, mg/dl 3.7 ± 0.7 3.8 ± 0.7 3.7 ± 0.7 NS

Serum albumin, g/dl 3.86 ± 0.42 3.85 ± 0.39 3.89 ± 0.46 NS

Hemoglobin, g/dl 12.3 ± 1.7 12.26 ± 1.82 12.39 ± 1.68 NS

C-Reactive Protein, mg/l 11.20 ± 28.1 11.08 ± 34.37 11.34 ± 18.53 NS

Serum PTH, pg/ml 122 ± 83 119 ± 34 124 ± 88 NS

Serum total cholesterol, mg/dl 154 ± 34 158 ± 34 151 ± 33 NS

Serum LDL cholesterol, mg/dl 91 ± 32 93 ± 31 87 ± 32 NS

Serum HDL cholesterol, mg/dl 45 ± 14 45 ± 12 45 ± 16 NS

Serum triglicerides, mg/dl 134 ± 58 130 ± 56 138 ± 60 NS

vitamin D (25-OH.D), ng/ml 39 ± 11 39 ± 10 38 ± 10 NS

Homa-IR 7.17 ± 2.4 7.13 ± 2.5 7.20 ± 2.36 NS

HOMA % B 49 ± 21 50 ± 22 48 ± 21 NS

Serum insulin, mcIU 18.3 ± 6.6 17.6 ± 6.1 19.0 ± 7.0 NS

Antidiabetic medications

Biguanides, number (%) 98 (67.5) 52 (73.2) 46 (62.2) NS

dose, mg/day 1740 ± 417 1760 ± 611 1725 ± 670 NS

Solfonylureas, number (%) 46 (31.7) 17 (23.9) 29 (39.2) NS

dose, mg/day 5.25 ± 1.19 5.29 ± 1.38 5.23 ± 1.14 NS

Meglitinides, number (%) 41 (28.3) 21 (29.6) 20 (27) NS

dose, mg/day 3.13 ± 1.35 3.52 ± 0.91 2.76 ± 1.59 NS

Use of > 1 medication, number (%) 37 (25.5) 20 (28.1) 17 (23) NS

Antihypertensive DRUGS

Furosemide, number (%) 131 (90.3) 62 (87.3) 69 (93.3) NS

dose, mg/day 55 ± 19 55 ± 21 55 ± 17 NS

ARB inhibitors, number (%) 75 (51.7) 37 (23.9) 38 (39.2) NS

ACE-Inhibitors, number (%) 74 (51) 38 (52.1) 36 (48.6) NS
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15 ml/min), serum bicarbonate levels (21.2 ±
1.9 mmol/l and 21.6 ± 2.0 mmol/l), fasting plasma
glucose levels (149 ± 41 mg/dl and 151 ± 47 mg/dl),
glycated hemoglobin (6.74 ± 1.0 % and 6.80 ± 1.4 %)
as well as serum insulin levels (17.6 ± 6.1 mcIU and
19.0 ± 7.0 mcIU) (Table 1). Overall, basal HOMA-IR
was 7.17 ± 2.4 and no difference between study
groups was noted (median [Interquartile range
(IQR)]: 6.4[5.5–7.9] and 6.4[5.5–8.2]; in the bicar-
bonate and control group, respectively). Of interest,
only 4 (5,6 %) and 6 (8.1 %) subjects in the bicar-
bonate and control group had a HOMA-IR <5. Fi-
nally, at baseline HOMA-%B was also comparable
between study groups (median [IQR]: 50.5 % [32.0–
67.2 %] and 43 % [32.7–62.2 %]; in the bicarbonate
and control group, respectively) (Table 1).
Table 1 shows patients’ antidiabetic and antihypertensive

drugs. Moreover, Table 1 shows 25-OH vitamin D: the two
groups did not show statistically significant differences of

vitamin D blood levels (39 ± 10 versus 38 ± 10 ng/ml, in
treated versus control, respectively)
Mean dose of oral bicarbonate administered was 0.7 ±

0.2 mmol/kg per each patient. At study inception there
were no differences between the two groups in the use
of oral antidiabetic drugs regarding number of pills,
doses, and type of drugs (Table 1). No adverse affects
were registered during oral bicarbonate administration.
At study completion, while no differences in renal

function and blood pressure control were observed, a
significant impact of oral sodium bicarbonate supplemen-
tation on serum bicarbonate levels (26.0 ± 2.0 vs 22.3 ±
1.9 mEq/l, in treated and control subjects, respectively) as
well as diabetes control and management was apparent
(Table 2). Specifically, HOMA-IR decreased in treated
(p for within group comparison: 0.004) but not control
subjects (p for within group comparison: 0.57) (median
[IQR]: 5.9 [5.0–7.0] and 6.3 [5.3–8.2]; p for between
groups comparison:0.01) (Fig. 1, Table 3). Similarly,

Table 1 Demographic, clinical, laboratory characteristics and use of oral anti-diabetic medications of patients randomized to oral
sodium bicarbonate (Treated) or conventional therapy (controls) at study inception (Continued)

Beta-blocker (%) 24 (16.5) 14 (19.7) 10 (13.5) NS

Other antihypertensive drugs number (%) 42 (28.9) 20 (28.2) 22 (29.7) NS

Use of > 1 medication, number (%) 70 (48.3) 38 (53.5) 32 (43.2) NS

Continuous and dichotomous variables are expressed as mean ± standard deviation or count (%), respectively

Table 2 Clinical, laboratory characteristics and use of anti-diabetic medications of patients randomized to oral sodium bicarbonate
(Treated) or conventional therapy (controls) at study completion

Overall Treated Control p-value

145 71 74

Body Weight, kg 76.1 ± 12.8 76.3 ± 12.8 73.4 ± 15.0 NS

Systolic blood pressure, mmHg 123 ± 17 125 ± 17 121 ± 16 NS

Disatolic blood pressure, mmHg 74 ± 8 76 ± 8 72 ± 10 NS

Serum Bicarbonate, mEql/l 24.2 ± 2.7 26.0 ± 2.0 22.3 ± 1.9 0.0001

Serum Gucose, mg/dl 118 ± 29 110 ± 32 127 ± 24 0.0001

HbA1C % 7.2 ± 2.9 6.7 ± 0.9 7.7 ± 3.7 0.028

Creatinine Clearance, ml/min 30 ± 16 32 ± 15 31 ± 16 NS

Homa-IR 6.52 ± 1.8 6.1 ± 1.5 7.0 ± 2.0 0.003

HOMA % B 52 ± 20 55 ± 18 49 ± 21 0.015

Serum insulin, mcIU 16.4 ± 6.6 13.4 ± 5.2 19.9 ± 6.3 0.0001

Antidiabetic medications

Biguanides, number (%) 89 (61.4) 45 (63.3) 44 (59.4) NS

dose, mg/day 1570 ± 517 1377 ± 457 1615 ± 550 0.005

Solfonylureas, number (%) 40 (27.6) 12 (16.9) 28 (37.8) 0.009

dose, mg/day 5.05 ± 1.29 4.89 ± 1.7 5.20 ± 1.07 0.033

Meglitinides, number (%) 36 (24.8) 16 (22.5) 20 (27) NS

dose, mg/day 3.13 ± 1.35 3.52 ± 0.91 2.76 ± 1.59 0.0001

Use of > 1 medication, number (%) 28 (19.3) 12 (16.9) 16 (21.6) NS

Continuous and dichotomous variables are expressed as mean ± standard deviation or count (%), respectively
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HOMA-%B increased (p for within group comparison:
0.036) in the experimental group (p for within group
comparison: 0.754) from a median [IQR] value of 50.5 %
[32.0 – 67.2 %] to 60.5 % [43.5 – 70.2 %] while it was
unchanged in the control group (median[IQR]: 43.0
[32.7 – 62.2] vs 45 [32.7 – 64.5] for baseline and follow-
up, respectively; p value for between comparison at
follow-up: 0.023) (Fig. 1, Table 3).

As documented in Fig. 2a and b, serum bicarbonate
levels or changes were not linearly associated with insu-
lin resistance. Improvement of serum levels of bicarbon-
ate was associated with HOMA improvement only if
metabolic acidosis over-correction (i.e., serum levels of
bicarbonate greater than 28 mEq/l) did not occur. In-
deed, a significant effect reduction (interaction test for
treatement*serum levels of bicarbonate: p = 0.013) of
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Fig. 1 The bagplots describe the association between serum bicarbonate and HOMA test in subjects randomized to oral sodium bicarbonate
(Treated) or conventional therapy (controls) at study inception and conclusion. Legend: The inner polygon (called bag) contains 50 % of all
points. Observations outside the outermost polygon (called fence) are outliers. The observations between the bag and fence are marked by line
segments. The asterisk symbol (*) near the center of the graph represents the bivariate median

Table 3 HOMA-IR and HOMA-%B at study inception and conclusion in treated and control subjects

Treated Control P value (between group)

HOMA-IR

Baseline 6.4 [5.5–7.9] 6.4 [5.5–8.2] 0.915

Study Completion 5.9 [5.0–7.0] 6.3 [5.3–8.2] 0.010

P-value (within group) 0.004 0.572

HOMA-%B

Baseline 50.5 [32.0–67.2] 43.0 [32.7–62.2] 0.543

Study Completion 60.5 [43.5–70.2] 45.0 [32.7–64.5] 0.023

P-value (within group) 0.036 0.754

Data are expressed as median [Interquartile range]. Wilcoxon rank sum test is used for between- and within-group comparisons
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oral bicarbonate supplementation on HOMA index oc-
curred as serum bicarbonate rose (Table 4). To explore
whether the effect on insulin resistance was due to the
oral bicarbonate administration per se or metabolic acid-
osis amelioration, we performed splines regression ana-
lyses to account for the change in the relationship
between serum bicarbonate levels and HOMA index ac-
cording to metabolic acidosis correction (i.e., below or
greater/equal than 28 mEq/l). As reported in Table 5,
the benefit associated with metabolic acidosis correction
disappeared when serum bicarbonate exceeded 28 mEq/
l. Notably, when treatment allocation and serum levels
of bicarbonate achieved were both forced into the spline

regression model, treatment allocation lost statistical sig-
nificance (p = 0.465) (Table 5), suggesting that metabolic
acidosis correction rather than oral bicarbonate supple-
mentation improves insulin resistance (Table 5).

Discussion
Current findings suggest that metabolic acidosis is linked
to insulin resistance in diabetic, Chronic Kidney Disease
(CKD) patients and oral bicarbonate administration may
correct metabolic acidosis that, in turn, improves insulin
sensitivity in this population.
Insulin resistance (or reduced insulin sensitivity) is

characterized by suboptimal biological responses of the

Table 4 Predictor of HOMA index at study completion by unadjusted and multivariable adjusted linear regression analyses

Predictor of HOMA index at study completion

Variable B-coef Standard Error P value

Unadjusted

- Treatment (yes vs no) −0.8740 0.3285 0.0087

Unadjusted

- Change in serum bicarbonate (%) −1.5833 0.9462 0.0964

Unadjusted

- Serum bicarbonate at study completion (mmol/l) −0.14511 0.06026 0.0173

Adjusted for treatment, change in serum bicarbonate
and interaction of change in serum bicarbonate*treatment

- Treatment (yes vs no) −1.4604 0.5015 0.00418

- Change in serum bicarbonate (%) −3.0382 1.8007 0.09378

- Interaction test (change in serum bicarbonate*treatment) 4.9948 2.3578 0.03591

Adjusted for treatment, serum bicarbonate at follow-up
and interaction of serum bicarbonate at followup*treatment

- Treatment (yes vs no) −11.6700 4.4255 0.00931

- Serum bicarbonate at follow-up (mmol/l) −0.2328 0.1106 0.03713

- Interaction test (serum bicarbonate at follow-up*treatment) 0.4476 0.1784 0.01325

*interaction between factors
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Fig. 2 The scatterplots represent the relationship between serum bicarbonate (a) and changes in serum bicarbonate (b) and HOMA index at
study completion. Legend: solid green line represents the linear regression line; solid red line represents the smoothed linear regression line
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liver, skeletal muscle and adipose tissue to normal
amounts of insulin secreted [4, 5, 17–19]. Several bio-
logical processes such as glucose, lipid or protein metab-
olism as well as single hormonal effects such as glycogen
synthesis or glucose oxidation may be affected in this
condition [20, 21]. Several factors may contribute to in-
sulin resistance in CKD. Visceral adipose tissue, diet,
low physical activity, cigarette smoking, drugs (glucocor-
ticosteroids, thiazide-like diuretics, beta-blockers) may
all contribute to insulin resistance [22–24]. However,
few lines of evidence also suggest that metabolic acid-
osis, that commonly complicates CKD, is implicated in
suboptimal biological responses to insulin [6, 25].
Hence, metabolic acidosis represents a modifiable risk

factor for insulin resistance and an attainable therapeutic
target in CKD [4]. Indeed, metabolic acidosis may exert
some detrimental effects at the cellular level inducing for
example an intra-extracellular shift of cations and in differ-
ent tissues such as bones and muscles as well as affect nu-
trition and metabolism [3, 6]. As part of CKD patients’ care,
alkali such as sodium bicarbonate administration and/or
low protein diet or diet rich in fruit and vegetables are com-
monly prescribed to avoid or correct metabolic acidosis.
Preliminary evidence suggests that metabolic acidosis
amelioration may attenuate CKD progression as well as
hard outcome [17, 26–28].
Our results confirm and expand previous efforts

[25, 29, 30] suggesting that metabolic acidosis correction
by sodium bicarbonate administration improves insulin re-
sistance without affecting the overall blood pressure control
(Table 2). This is likely due to the better response to insulin
of target organs (as suggested by the improvement of both
HOMA-IR and HOMA-%B). In contrast with previous

experiences [25, 29, 30], Ikizler and coworkers [31] recently
failed to demonstrate an association between metabolic
acidosis and insulin resistance in a cross-sectional, observa-
tional study of 42 patients with CKD stage 3–5. According
to these findings, a reduced acid burden improved meta-
bolic acidosis but not insulin sensitivity, measured via the
hyperinsulinemic euglycemic clamp method [31]. Although
we estimated rather than measured insulin resistance, our
results suggest that, at least in diabetic CKD patients, over-
correction of metabolic acidosis may also be detrimental
since values of serum bicarbonate greater than 28 mEq/l
are associated with decreased insulin sensitivity (Fig. 2).
While Ikizler and coworkers [31] define metabolic acidosis
as a dichotomous variable (i.e., serum bicarbonate level
<22 mEq/l), we prospectively explored the association of
serum bicarbonate as a continuous variable and insulin re-
sistance over a broad range of values of serum bicarbonate
(i.e., from 18 to 31 mEq/l). Current findings suggest that
this association is non-linear (Fig. 2) and insulin sensitivity
decreases for values of serum bicarbonate below 24 mEq/l
and above 28 mEq/l. Of interest, accounting for the non-
linear nature of the association also suggest that bicarbon-
ate levels rather than sodium bicarbonate per se, is respon-
sible for the effect on the HOMA index (Table 5).
In patients of treatment group assuming Biguanides

(45 subjects), bicarbonate administration was higher
(not significant) compared to other oral antidiabetic
drugs (0.79 ± 0.4 mmol/kg).
Although further work is needed to validate these results

in diabetic as well as non-diabetic CKD patients, the clinical
relevance of these findings should be evaluated in light of
the prevalence of insulin resistance and its associated com-
plications such as hyperinsulinemia, hyperglycemia and
hypertriglyceridemia [32]; the widespread use of sodium bi-
carbonate or alkali supplementation, low protein or vege-
tarian diet for CKD care [17, 33–40] as well as the safety
and relative inexpensiveness of the treatment tested. Aside
of confirming the link of bicarbonate and insulin resistance,
current results also provide with some guidance for CKD
patient care.
Our analyses suffer of a few limitations worth noting.

We investigated the relationship of insulin sensitivity and
metabolic acidosis in a subgroup of patients (diabetic pa-
tients on oral antidiabetic medications) randomized into
the Use of Bicarbonate in Chronic Renal Insufficiency
(UBI) study (NCT NCT01640119). This study aims at
testing the impact of alkali administration and acidosis
correction in diabetic and non-diabetic CKD patients on
renal function decline. Although we analyzed a subgroup
of patients, the analyses were carried out in the first 145
consecutive diabetic patients who completed at least 1
year of follow-up. This selection criterion as well as the ran-
dom assignment to treatment at study inception are inde-
pendent of the investigators’ beliefs and influences and we

Table 5 Predictor of HOMA index at study completion by
unadjusted and multivariable adjusted spline regression
analyses

Predictor of HOMA index at study completion (further elaborations)

Variable B-coef Standard
Error

P value

Unadjusted

- Serum bicarbonate <28 mmol/l at
follow-up

−4.6008 1.1804 0.00015

- Serum bicarbonate ≥28 mmol/l at
follow-up

1.9360 1.0270 0.06146

Adjusted for treatment, serum bicarbonate greater/equal or lower than
28 mmol/l

- Treatment (yes vs no) −0.3482 0.4757 0.4654

- Serum bicarbonate <28 mmol/l at
follow-up

−3.6980 1.7085 0.0321

- Serum bicarbonate ≥28 mmol/l at
follow-up

2.2055 1.0926 0.0454

Serum bicarbonate is used as a continuous variable and divided according
to ≥ 28 mmol/l (knot). The HOMA-serum bicarbonate levels relationship
changes for values of serum bicarbonate greater equal than 28 mmol/l
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can argue that current findings are similar to a randomized
clinical trial (RCT). The well balance of demographic, clin-
ical and laboratory characteristics between groups, further
corroborates this point. No power assumption or sample
size calculation was performed in light of the exploratory
nature of these analyses and the lack of similar data in this
domain. Insulin resistance is calculated rather than mea-
sured. However, the HOMA test is widely accepted as a reli-
able and reproducible tool to assess insulin sensitivity in
clinical and epidemiological studies [12–16, 41, 42].

Conclusions
In conclusion, current results corroborate the notion that
metabolic acidosis promotes insulin resistance and shed
some light on the impact of sodium bicarbonate adminis-
tration in CKD diabetic patients. Although further valid-
ation is mandatory, it seems that serum bicarbonate levels
rather than the treatment used is relevant to restore insu-
lin sensitivity. Finally, acidosis overcorrection (i.e., serum
bicarbonate levels >28 mEq/l) should be avoided since, as
metabolic acidosis, is associated with insulin resistance.
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